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Abstract

The decision functions constructed by support vector machines (SVM’s)
usually depend only on a subset of the training set—the so-called support
vectors. We derive asymptotically sharp lower and upper bounds on the
number of support vectors for several standard types of SVM’s. Our
results significantly improve recent achievments of the author.

1 Introduction

Given a training sef’ = ((z1,91),- .-, (Zn,yn)) With z; € X, y; € Y := {-1,1} stan-
dard support vector machines (SVM’s) for classification (cf. [1], [2]) solve an optimization
problem of the form

1 n
arg min AL Il + ;;L(yxf(xi) +0)), (1)
beR =

whereH is a reproducing kernel Hilbert space (RKHS) of a keinelX x X — R (cf. [3],
[4]), A > Ois a free regularization parameter ahd R — [0, o) is a convex loss function.

Common choices fak are the hinge loss functidit) := max{0, 1—¢}, the squared hinge
loss functionL(t) := (max{0,1—t})* and the least square loss functib(t) := (1 —¢)?.
The corresponding classifiers are called L1-SVM, L2-SVM and LS-SVM, respectively.

Common choices of kernels are the Gaussian RBF, z’) = exp(—o?||z — z'||3) for
z,z' € R andfixedr > 0 and polynomial kernelB(z, z') = ((z, 2" +c)™ forz, 2’ € R?
and fixedec > 0, m € N.

If (fr,x,br.n) € H x R denotes a solution of (1) we have

I —
fra= o\ ;yiaik(xu y (2)
for suitable coefficients],...,a) € R (cf. [5]). Obviously, only the samples; with

af # 0 have an impact orfr,,. These samples are called support vectors. The fewer
support vectorsfr » has the faster it can be evaluated. Moreover, it is well known that



the number of support vectog SV (fr ) of the representation ofr  (cf. Section 3

for a brief discusssion) also has a large impact on the time needed to solve (1) using the
dual problem. Therefore, it is of high interest to know how many support vectors one
can expect for a given classification problem. In this work we address this question by
establishing asymptotically lower and upper bounds on the number of support vectors for
typical situations.

The rest of the paper is organized as follows: in Section 2 we introduce some technical
notions and recall recent results in the direction of the paper. In Section 3 our results are
presented and discussed, and finally, in Section 4 their proofs can be found.

2 Notations and known results

The standard assumption in classification is that the training’ sminsists of i.i.d. pairs
drawn from an unknown distributiof on X x Y. For technical reason we assume through-
out this paper thak is a compact space, e.g. a bounded, closed subsf ofA Bayes
decision function (cf. [6])fp : X — Y is a function thatPx-a.s. equald and—1 on
Cy:={z e X :P(llz) > 1/2}andC_; := {z € X : P(—1|z) > 1/2}, respectively.
The corresponding classification erf@r- of such a function is called the Bayes risk®f
Recall, that the Bayes risk is the smallest possible classification error.

A RKHS H is called universal it is dense in the space of continuous functiéh(sY).
The best known example of a universal kernel is the Gaussian RBF kernel (cf. [7]).

Let us recall some results of the recent paper [8]. To simplify the statements, let us assume
that P has no discrete components, ifey ({z}) = 0 for all z € X. Furthermore, leL be

a continuous convex loss function satisfying some minor regularity conditions. Then it was
shown for universal RKHS's and stritly positive nullsequenges) satisfying a regularity
condition that the following statements hold forali> 0 andn — oo:

pr (T € (X xY)": #£SV (frr,) > (Rp — 8)n) ~1. 3)

In particular, this result holds for L1-SVM’s. Furthermore, fobeing also differentiable
(e.g. L2-SVM's and LS-SVM’s) it was proved

pr (T € (X x V)" : #SV(fra,) > (Sp— 6)n) =1, 4)

whereSp := Px({z € X : 0 < P(1|z) < 1}) denotes the probability of the set of points
where noise occurs. Obviously, we always h&vye > 2R p and for noisy non-degenerate
P, that is forP with

Px({z € X : P(1lz) ¢ {0,1/2,1}}) >0
this relation becomes a strict inequality. We shall prove in the next section that (3) can
be significantly improved for the L1-SVM. We shall also show that this new lower bound
is also an upper bound under moderate condition$®and H. Furthermore, we prove

that (4) is asymptotically optimal for the L2-SVM and show that it can be significantly
improved for the LS-SVM.

3 New bounds

We begin with lower and upper bounds for the L1-SVM. Recall, that the problem (1) for
this classifier can be reformulated as

minimize N+ + X6 forfe H beR, (€R"
=1
subject to yi(f(a:i)+b) >1-¢&, i=1,...,n ®)

&ZO, i:l,...,n.



Instead of solving (5) directly, one usually solves the dual optimization problem (cf. [4])

n n
maximize > oa;— ﬁ > yiyjaiogk(z, x;) fora € R?
i=1 i,j=1
n
subject to > yia; =0, )
i=1
SaiS%, 1=1,...,n.

If (aF,...,ak) € R denotes a solution of (6) thefy , can be computed by (2). Note that

the representaion ¢fr » is not uniquein general, i.e. using other algorithms for solving (5)

can lead to possibly sparser representations. However, in contrast to the general case the
representation (2) ofr » is P"-a.s. unique if the kernel is universal afchas no discrete
components (cf. [8]). Since our results for the L1-SVM hold for general kernels we always
assume thafr , is found by (6). Finally, for a loss functioh and a RKHSH we write

Ripa = figlquL,P(fﬂLb),
beR

whereRp p(f) := Eq ) ~pL(yf(z)). Note, thatfr,x, +br,, cannot achieve ah-risk
better tharR ;. p g, if H is the RKHS used in (1). Now, our first result is:

Theorem 3.1 Let k£ bea continuouskernel on X and P be a probability measureon X xY
with no discrete components. Then for the L1-SVM using a regularization sequence (A ,,)
with A\, = 0 andn\? /logn — oo andall ¢ > 0 we have

pr (T € (X xY)" : #£SV (frr,) > (Rppar — 8)n) 1.

Remark 3.2 If k£ is a universal kernel we havR [ p. gy = 2Rp by the proof of [9,
Prop. 3.2] and thus Theorem 3.1 yields the announced improvement of (3). For non-
universal kernels we even haWe, p, i > 2R p in general.

Remark 3.3 For specific kernels the regularity condition? / logn — oo can be weak-
ened. Namely, for the Gaussian RBF kernel &n ¢ R? it can be substituted by

nAn |log \n| ="t — oco. Only slightly stronger conditions are sufficient 16r°-kernels.

The interested reader can prove such conditions using the results of [9] for establishing (9).

Remark 3.4 If H is finite dimensional ang > dim H the representation (2) ¢fr », can
be simplified such that only at modtm H kernel evaluations are neccessary. However,
this simplification has no impact on the time needed for solving (6).

In order to formulate an upper bound ¢SV (f 7, ) recall that a function is called an-
alytic if it can be locally represented by its Taylor series. Lebe a loss functiond
be a RKHS overX and P be a probability measure ok x Y. We call the paif H, P)
non-trivial (with respect td.) if

RL,P,H < inf ’R,LJJ(b) R
beR

i.e. the incorporation off has a non-trivial effect on the-risk of P. If H is universal we
haveRr pr = inf{Rr p(f) f:X — R} (cf. proof of [9, Prop. 3.2]) and therefore
(H, P) is non-trivial if P has two non-vanishing classes, iRy (Cy) > 0 andPx (C'_1) >

0. Furthermore, we denote the open unit balRdfby B .. Now our upper bound is:

Theorem 3.5 Let H bethe RKHSof ananalytickernel on Bra. Furthermore, let X C Bpa
be a closed ball and P be a noisy non-degenerate probability measureon X x Y such that



Px has a density with respect to the Lebesgue measure on X and (H, P) is non-trivial.
Then for the L1-SVM using a regularization sequence (\,,) with A\, — 0 and nA3 — oo

we have
#SV(fra,)

— Rr,pH
n

in probability.

Probably the most restricting condition éhin the above theorem is thaty has to have a
density with respect to the Lebesgue measure. Considering the proof this condition can be
slightly weakened to the assumption that ewéryl -dimensional subset of has measure

zero. Although it would be desirable to exclude only probability measures with discrete
components it is almost obvious that such a condition cannot be sufficiehtfdr(cf. [10,

p.32]). The assumption th&tis noisy and non-degenerate is far more less restrictive since
neither completely noise-freB nor noisy problems with only “coin-flipping” noise often
occur in practice. Finally, the condition th@, P) is non-trivial is more or less implicitly
assumed whenever one uses nontrivial classifiers.

Example 3.6 Theorem 3.5 directly applies to polynomial kernels. Note, that the limit
Rr.p,a depends on botk? and the choice of the kernel.

Example 3.7 Let k be a Gaussian RBF kernel with RKH$ and X be a closed ball of
R?. Moreover, letP and()\,,) be according to Theorem 3.5. Recall, thas universal and
hence( H, P) is non-trivial iff P has two non-vanishing classes. Sirtds also analytic on

R? we find -
7# (fT7)\") — ZRP .
n
Therefore, (4) shows that in general this L1-SVM produces sparser decision functions than
the L2-SVM and the LS-SVM based on a Gaussian RBF kernel (cf. also Theorem 3.11).

Remark 3.8 A variant of the L1-SVM that is often considered in theoretical papers is
based on the optimization problem (5) with a-priori fixecd= 0. Besides the constraint
>, yia; = 0, which no longer appears, the corresponding dual problem is identical to
(6). Hence it is easily seen that Theorem 3.1 also holds for this classifier. Moreover, for this
modification Theorem 3.5 can be simplified. Namely, the assumptiorPtlsnoisy and
non-degenerate is superfluous (cf. [8, Prop. 3.20] to guarantee (14)). Moreover, instead
of assumingn\? — oo it suffices to suppose)? — oo (cf. again [8, Prop. 3.20]). In
particular, for a Gaussian RBF kernel and noise-free problBme then obtain

w -0, )
i.e. the number of support vectors increases more slowly than linearly. This motivates the
often claimed sparseness of SVM's.

The following theorem shows that the lower bound (4)}48V (f 7 », ) for the L2-SVM is
often asymptotically optimal. This result is independent of the used optimization algorithm
since we only consider universal kernels and measures with no discrete components.

Theorem 3.9 Let H be the RKHS of an analytic and universal kernel on Ba. Further-
more, let X C Bpa be a closed ball and P be a probability measure on X x Y with
Rp > 0 such that Px has a density with respect to the Lebesgue measure on X and
(H, P) isnon-trivial. Then for the L2-SVYM using (\,,) with A\, — 0 andn A% /logn — oo

we have
#SV(fra,)
n

— Sp
in probability.



Remark 3.10 For the L2-SVM with fixed offseb := 0 the assumptiofR p > 0 in the
above theorem is superfluous (cf. proof of Theorem 3.9 and proof of [8, Prop. 3.20]). Fur-
thermore, it suffices to assuma? — oo instead Ofn)\4/10gn — oo. In particular, for a
Gaussian RBF kernel and noise- free problémae obtain (7), i.e. for noise-free problems
this classifier also tends to produce sparse solutions in the sense of Remark 3.8.

Our last result shows that LS-SVM’s often tend to use almost every sample as a support
vector:

Theorem 3.11 Let H be the RKHS of an analytic and universal kernel on Ba. Further-
more, let X C Bgra be aclosed ball and P be a probability measure on X x Y such that
Px has a density with respect to the Lebesgue measure on X and (H, P) is non-trivial.
Then for the LSSVM using(\,,) with \,, — 0 andn)% /logn — oo we have

#SV (fry.)

n

—1
in probability.

Remark 3.12 Note, that unlike the L1-SVM and the L2-SVM (with fixed offset) the LS-
SVM does not tend to produce sparse decision functions for noise?frais still holds

if one fixes the offset for L2-SVM's, i.e. one considers regularization networks (cf. [11]).
As often claimed and never proved the reason for the different behaviours is the margin:
the assumptions ol and P ensure that only a very small fraction of sampitgscan be
mapped tat1 by fr,5, (cf. also Remark 4.1). For the L2-SVM this asymptotically ensures
that most of the samples are mapped to values outside the margin (cf. the properties of
By, \ Ajs in the proof of Theorem 3.9) and it is well-known that such samples cannot be
support vectors. In contrast to this the LS-SVM has the property that every point not lying
on the margin is a support vector. Using the techniques of our proofs it is fairly easy to see
that the same reasoning holds for the hinge loss function compared to “modified hinge loss
functions with no margin”.

4  Proofs

Let L be a loss function and@ be a training set. For a functigh: X — R we denote the
empirical L-risk of f by

Rrr(f+b) =

zli—‘

Z f(zi) + b)) .

Proof of Theorem 3.1: Let (frx,,br.a,,¢") € H x R x R* anda* € R" be solutions
of (5) and (6) for the regulariztion paramestey;, respectively. Since there is no duality gap
between (5) and (6) we have (cf. [4]):

1« * - *
/\n<fT,)\n7fT,)\n> + E § fz = § a; — § yzyja a; k mzvmj) (8)
i=1 i=1 i,j=1

By (2) this yields
1 n 1 n n
- > & < 20 (fra., fran) + - Y& =) a;.
i=1 i=1 i=1
Furthermore, recall that, — 0 andn\2/logn — oo implies

1 n
- Z & =Ror(fra, +bra,) = Ropu 9)

i=1



in probability forn — oo (cf. [9]) and hence for alk > 0 the probability of

n
Z o; > Rrpm—¢ (10)

i=1
tends to 1 fom — oo. Now let us assume that our training set satisfies (10). Since
af < 1/nwe then find

. 1 1
Rippu—€ < Zaf < Z = E#Sv(fT,)\n)

i=1 af#0

which finishes the proof. ]

For our further considerations we need to consider the optimization problem (1) with re-
spect toP, i.e.
argi}éil{} MANE +Re.p(f+0). (11)
beR
We denote a solution of (11) by p,x, bp,»).

Proof of Theorem 3.5: SinceH is the RKHS of an analytic kernel every functigre H is
analytic. Using the holomorphic extension of a non-constantH we see (after a suitable
complex linear coordinate change, cf. [10, p. 31f]) thatferR andz ¢, ..., 241 € Rthe
equationf(zi,...,z4—1,x4) = c has at mosj solutionsz,, wherej > 0 is locally (with
respecttar,,...,zq4_1 € R) constant. By a simple compactness argument we hence find

Px({zx e X: f(x)=c}) >0 = f(z) =c Px-as. (12)
forall f € H and allc € R. Now, let us suppose that

Px({z € X : fpa(z) + bpr = fp()}) >0 (13)

for some)X > 0, where fp denotes the Bayes decision function. Then we may assume
without loss of generality thaPx ({z € X : fpa(z) + bpx = 1}) > 0 holds. By (12)
this leads tofp,(z) + bp,x = 1 Px-a.s. However, sincR . p(fpx + bpr) = RL,pu
for A — 0 (cf. proof of [9, Prop. 3.2]) we see thd , cannot be constant for smallsince
(H, P) was assumed to be non-trivial. Therefore (13) cannot hold for sinall 0 and
hence we may assume without loss of generality that

Px({l‘ e X: |fP,>\n (.Z’) + bp,)\n — fp(.Z’)| = 0}) =0

holds for alln. > 1. Writing
As = U{£€X:|fp’)\n(l‘)—l-bp7)\n —fp(l‘)| S(S}, 6>0
n=1

there thus exists @ > 0 such thatPx(4;) < . Let us fix a training sef’ =
((mlayl), ) (l‘n,yn)) with

fra. +b7x. = fPr. — 0Pl
\Re,w(fra, +bra,) = Re,p(fea, +bea,)|

< 9, (14)
< ¢ (15)

and
|{z rx; € A5}| < 2en.

Recall (cf. [9], [8]), that the probability of such converges to 1 fon — oo. Moreover,
by (8) we find

220 (frnns froan) + Re,o(fra, +bra,) = Za;- (16)
i=1



Sincefr a, + bra, andfp, + bp, minimize the regularized risks, (15) implies

Mllfroanlli +Re,r(froa, +b7a,) = Aallfea, | =R, p(fpa, +bpa,)
By the proof of [9, Prop. 3.2] we have
Ml e+ Re.p(fen, +bpa,) = Ri.po (18)

and therefore we obtaif\, || f.x, I3 + Re,2(frn, +bra,) — Re.pu| < 2 for large
n. Now, (15), (17) and (18) implies,(fr ., fr.,) < 3¢ for largen. Hence (16) yields

<e. (17)

Rer,pu+5 > Z a; (19)

i=1
if n is sufficiently large. Now let us suppose that we have a safaple);) of T with z; ¢
As. Thenwe havéfp s, (z;) + bpa, — fr(z:)| > 6 and hencefr y, (z;) + by, # *1
by (14). By [4, p. 107] this means eithet: = 0 or a} = 1/n. Therefore, by (19) we find

n n

* * 1 - *

Rr.pH +5 > Zai > Z a; = E|{z:xi¢A5 anda; # 0}|
=1 i ZAs

Since we have at mo8tn samples ind s we finally obtain

1
E#SV(fT,An) < Rr,pH+Tc.

Now the assertion follows by Theorem 3.1. |

Remark 4.1 The proof of Theorem 3.5 is based on a kind of paradox: recall that it was
shown in [8] that

T, b, — fP
on{z € X : P(1|z) ¢ {0,1/2,1}} in probability. However, the assumption on bdth
andP ensures that for typicdl the sets

{e € X :|fra, (x) +bra, — fr(x)| <6}

become arbitrarily small fof — 0. We will apply these seemingly contradicting properties
in the following proofs, too.

Proof of Theorem 3.9: Let N := {z € X : 0 < P(1]z) < 1} be the subset ok where
P is noisy. Furthermore, |ePx (A;) < ¢, whereA; is defined as in the proof of Theorem
3.5. We write

B, = {z€C/\N: fpx, (x)+bpy, >1-06}
U {x € C_1\N: fpa,(x) +bpy, < -1 +5} .

By [8, Thm. 3.9] we may assume without loss of generality fhat{ B,,) > Px (X \N)—¢
foralln > 1. Letus fix a training set” = ((z1,y1), ..., (Tn, yn)) With

lfra, +b1n, — fEr, =P, < 6,
[{i:zi € B\ As}| > n(Px(X\N)-3e).

Recall (cf. proof of [8, Prop. 3.25]), that the probability of suEltonverges to 1 fon —

oo. In view of (4) it suffices to show that every samplee B,, \ A; cannot be a support
vector. Given arx; € B, \ As; we may assume without loss of generality thate C;.
Thenz; € B, impliesfp,An (xi)-i—bp,)\n > 1-J while z; € As yie|dS|fp7)\n (.Ti)+bp7)\n -

1| > 6. Hence we findfpx, (z;) + bpx, > 1+ 6 and thusfr y, (z;) + br,x, > 1. By the
Karush-Kuhn-Tucker conditions of the primal/dual optimization problem of the L2-SVM
(cf. [4, p. 105]) the latter shows that is not a support vector. |



Proof of Theorem 3.11: Let Px (A4;5) < €, whereA; is defined as in the proof of Theorem
3.5. Without loss of generality we may assume (0,1/2). Let us define’y := {z €
X :P(l|z) =1/2} and

D, = {.Z’ € Cy: |fP,>\n('T) + bp7)\n| < 1/2}.
By [8, Thm. 3.9] we may assume without loss of generality tRgt(D,,) > Px(Cy) — ¢

foralln > 1. Now, let us fix a training s€f = ((z1,y1), .- ., (zn, yn)) With
I fra, +0rx, — fPa, —bPal < 6
|{Z$Z€A5}| < 2en
[{i: 2z € Dy} > n(Px(Co)—2e).

Again, the probability of sucli’ converges to 1 fon — oo (cf. proof of [8, Prop. 3.25]).
Now let us consider a samptg € (X \ A5) NC; of T. Thenwe havéfp, (x;)+bpx, —

1| > ¢d and hencefrz, (z;) + br,», # 1. By [8, Rem. 3.19] this shows that is a support
vector. Obviously, the same holds true for samplesc (X \ 4s) N C_;. Finally, for
samples:; € D,, we have frx, (z;) +br,x,| < 1/24 4§ < 1 and hence these samples are
always support vectors. [ |
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